
Department of cse Page 1 of 27

UNIT-IV

TRANSACTION MANAGEMENT

What is a Transaction?

A transaction is an event which occurs on the database. Generally a transaction reads a value from

the database or writes a value to the database. If you have any concept of Operating Systems, then

we can say that a transaction is analogous to processes.

Although a transaction can both read and write on the database, there are some fundamental

differences between these two classes of operations. A read operation does not change the image of

the database in any way. But a write operation, whether performed with the intention of inserting,

updating or deleting data from the database, changes the image of the database. That is, we may say

that these transactions bring the database from an image which existed before the transaction

occurred (called the Before Image or BFIM) to an image which exists after the transaction occurred

(called the After Image or AFIM).

The Four Properties of Transactions

Every transaction, for whatever purpose it is being used, has the following four properties. Taking

the initial letters of these four properties we collectively call them the ACID Properties. Here we try

to describe them and explain them.

Atomicity: This means that either all of the instructions within the transaction will be reflected in the

database, or none of them will be reflected.

Say for example, we have two accounts A and B, each containing Rs 1000/-. We now start a

transaction to deposit Rs 100/- from account A to Account B.

Read A;

A = A – 100;

Write A;

Read B;

B = B + 100;

Write B;

Department of cse Page 2 of 27

Fine, is not it? The transaction has 6 instructions to extract the amount from A and submit it to B.

The AFIM will show Rs 900/- in A and Rs 1100/- in B.

Now, suppose there is a power failure just after instruction 3 (Write A) has been complete. What

happens now? After the system recovers the AFIM will show Rs 900/- in A, but the same Rs 1000/-

in B. It would be said that Rs 100/- evaporated in thin air for the power failure. Clearly such a

situation is not acceptable.

The solution is to keep every value calculated by the instruction of the transaction not in any stable

storage (hard disc) but in a volatile storage (RAM), until the transaction completes its last instruction.

When we see that there has not been any error we do something known as a COMMIT operation. Its

job is to write every temporarily calculated value from the volatile storage on to the stable storage. In

this way, even if power fails at instruction 3, the post recovery image of the database will show

accounts A and B both containing Rs 1000/-, as if the failed transaction had never occurred.

Consistency: If we execute a particular transaction in isolation or together with other transaction,

(i.e. presumably in a multi-programming environment), the transaction will yield the same expected

result.

To give better performance, every database management system supports the execution of multiple

transactions at the same time, using CPU Time Sharing. Concurrently executing transactions may

have to deal with the problem of sharable resources, i.e. resources that multiple transactions are

trying to read/write at the same time. For example, we may have a table or a record on which two

transaction are trying to read or write at the same time. Careful mechanisms are created in order to

prevent mismanagement of these sharable resources, so that there should not be any change in the

way a transaction performs. A transaction which deposits Rs 100/- to account A must deposit the

same amount whether it is acting alone or in conjunction with another transaction that may be trying

to deposit or withdraw some amount at the same time.

Isolation: In case multiple transactions are executing concurrently and trying to access a sharable

resource at the same time, the system should create an ordering in their execution so that they should

not create any anomaly in the value stored at the sharable resource.

Department of cse Page 3 of 27

Department of cse Page 4 of 27

There are several ways to achieve this and the most popular one is using some kind of locking

mechanism. Again, if you have the concept of Operating Systems, then you should remember the

semaphores, how it is used by a process to make a resource busy before starting to use it, and how it

is used to release the resource after the usage is over. Other processes intending to access that same

resource must wait during this time. Locking is almost similar. It states that a transaction must first

lock the data item that it wishes to access, and release the lock when the accessing is no longer

required. Once a transaction locks the data item, other transactions wishing to access the same data

item must wait until the lock is released.

Durability: It states that once a transaction has been complete the changes it has made should be

permanent.

As we have seen in the explanation of the Atomicity property, the transaction, if completes

successfully, is committed. Once the COMMIT is done, the changes which the transaction has made

to the database are immediately written into permanent storage. So, after the transaction has been

committed successfully, there is no question of any loss of information even if the power fails.

Committing a transaction guarantees that the AFIM has been reached.

There are several ways Atomicity and Durability can be implemented. One of them is called Shadow

Copy. In this scheme a database pointer is used to point to the BFIM of the database. During the

transaction, all the temporary changes are recorded into a Shadow Copy, which is an exact copy of

the original database plus the changes made by the transaction, which is the AFIM. Now, if the

transaction is required to COMMIT, then the database pointer is updated to point to the AFIM copy,

and the BFIM copy is discarded. On the other hand, if the transaction is not committed, then the

database pointer is not updated. It keeps pointing to the BFIM, and the AFIM is discarded. This is a

simple scheme, but takes a lot of memory space and time to implement.

If you study carefully, you can understand that Atomicity and Durability is essentially the same

thing, just as Consistency and Isolation is essentially the same thing.

Transaction States

There are the following six states in which a transaction may exist:

Active: The initial state when the transaction has just started execution.

Partially Committed: At any given point of time if the transaction is executing properly,

Department of cse Page 5 of 27

then it is going towards it COMMIT POINT. The values generated during the execution are

all stored in volatile storage.

Failed: If the transaction fails for some reason. The temporary values are no longer required,

and the transaction is set to ROLLBACK. It means that any change made to the database by

this transaction up to the point of the failure must be undone. If the failed transaction has

withdrawn Rs. 100/- from account A, then the ROLLBACK operation should add Rs 100/- to

account A.

Aborted: When the ROLLBACK operation is over, the database reaches the BFIM. The

transaction is now said to have been aborted.

Committed: If no failure occurs then the transaction reaches the COMMIT POINT. All the

temporary values are written to the stable storage and the transaction is said to have been

committed.

Terminated: Either committed or aborted, the transaction finally reaches this state.

The whole process can be described using the following diagram:

Entry Point

ACTIVE

PARTIALLY

COMMITTED

FAILED

COMMITTED

TERMINATE
d

ABORTED

Department of cse Page 6 of 27

Concurrent Execution

A schedule is a collection of many transactions which is implemented as a unit. Depending upon

how these transactions are arranged in within a schedule, a schedule can be of two types:

• Serial: The transactions are executed one after another, in a non-preemptive manner.

• Concurrent: The transactions are executed in a preemptive, time sharedmethod.

In Serial schedule, there is no question of sharing a single data item among many transactions,

because not more than a single transaction is executing at any point of time. However, a serial

schedule is inefficient in the sense that the transactions suffer for having a longer waiting time and

response time, as well as low amount of resource utilization.

In concurrent schedule, CPU time is shared among two or more transactions in order to run them

concurrently. However, this creates the possibility that more than one transaction may need to access

a single data item for read/write purpose and the database could contain inconsistent value if such

accesses are not handled properly. Let us explain with the help of an example.

Let us consider there are two transactions T1 and T2, whose instruction sets are given as following.

T1 is the same as we have seen earlier, while T2 is a new transaction.

T1

Read A;

A = A – 100;

Write A;

Read B;

B = B + 100;

Write B;

T2

Read A;

Temp = A * 0.1;

Read C;

C = C + Temp;

Department of cse Page 7 of 27

Write C;

T2 is a new transaction which deposits to account C 10% of the amount in account A.

If we prepare a serial schedule, then either T1 will completely finish before T2 can begin, or T2 will

completely finish before T1 can begin. However, if we want to create a concurrent schedule, then

some Context Switching need to be made, so that some portion of T1 will be executed, then some

portion of T2 will be executed and so on. For example say we have prepared the following

concurrent schedule.

T1 T2

Read A;

A = A – 100;

Write A;

Read B;

B = B + 100;

Write B;

Read A;

Temp = A * 0.1;

Read C;

C = C + Temp;

Write C;

Deparment of cse Page 8 of 27

No problem here. We have made some Context Switching in this Schedule, the first one after

executing the third instruction of T1, and after executing the last statement of T2. T1 first deducts

Rs 100/- from A and writes the new value of Rs 900/- into A. T2 reads the value of A, calculates

the value of Temp to be Rs 90/- and adds the value to C. The remaining part of T1 is executed

and Rs 100/- is added to B.

It is clear that a proper Context Switching is very important in order to maintain the Consistency

and Isolation properties of the transactions. But let us take another example where a wrong

Context Switching can bring about disaster. Consider the following example involving the same

T1 and T2

1 T2

Read A;

A = A – 100;

Write A;

Read B;

B = B + 100;

Write B;

Read A;

Temp = A * 0.1;

Read C;

C = C + Temp;

Write C;

Deparment of cse Page 9 of 27

This schedule is wrong, because we have made the switching at the second instruction of T1. The

result is very confusing. If we consider accounts A and B both containing Rs 1000/- each, then

the result of this schedule should have left Rs 900/- in A, Rs 1100/- in B and add Rs 90 in C (as

C should be increased by 10% of the amount in A). But in this wrong schedule, the Context

Switching is being performed before the new value of Rs 900/- has been updated in A. T2 reads

the old value of A, which is still Rs 1000/-, and deposits Rs 100/- in C. C makes an unjust gain of

Rs 10/- out of nowhere.

Serializability

When several concurrent transactions are trying to access the same data item, the instructions

within these concurrent transactions must be ordered in some way so as there are no problem in

accessing and releasing the shared data item. There are two aspects of serializability which are

described here:

Conflict Serializability

Two instructions of two different transactions may want to access the same data item in order to

perform a read/write operation. Conflict Serializability deals with detecting whether the

instructions are conflicting in any way, and specifying the order in which these two instructions

will be executed in case there is any conflict. A conflict arises if at least one (or both) of the

instructions is a write operation. The following rules are important in Conflict Serializability:

1. If two instructions of the two concurrent transactions are both for read operation, then

they are not in conflict, and can be allowed to take place in any order.

2. If one of the instructions wants to perform a read operation and the other instruction

wants to perform a write operation, then they are in conflict, hence their ordering is

important. If the read instruction is performed first, then it reads the old value of the data

item and after the reading is over, the new value of the data item is written. It the write

instruction is performed first, then updates the data item with the new value and the read

instruction reads the newly updated value.

3. If both the transactions are for write operation, then they are in conflict but can be

allowed to take place in any order, because the transaction do not read the value updated

Deparment of cse Page 10 of 27

by each other. However, the value that persists in the data item after the schedule is over

is the one written by the instruction that performed the last write.

View Serializability:

This is another type of serializability that can be derived by creating another schedule out of an

existing schedule, involving the same set of transactions. These two schedules would be called

View Serializable if the following rules are followed while creating the second schedule out of

the first. Let us consider that the transactions T1 and T2 are being serialized to create two

different schedules

S1 and S2 which we want to be View Equivalent and both T1 and T2 wants to access the same

data item.

1. If in S1, T1 reads the initial value of the data item, then in S2 also, T1 should read the

initial value of that same data item.

2. If in S1, T1 writes a value in the data item which is read by T2, then in S2 also, T1 should

write the value in the data item before T2 reads it.

3. If in S1, T1 performs the final write operation on that data item, then in S2 also, T1

should perform the final write operation on that data item.

Let us consider a schedule S in which there are two consecutive instructions, I and J , of

transactions Ti and Tj , respectively (i _= j). If I and J refer to different data

items, then we can swap I and J without affecting the results of any instruction

in the schedule. However, if I and J refer to the same data item Q, then the order of the two steps
may matter. Since we are dealing with only read and write instructions, there are four cases that
we need to consider:

I = read(Q), J = read(Q). The order of I and J does not matter, since the same value

of Q is read by Ti and Tj , regardless of the order.

I = read(Q), J = write(Q). If I comes before J , then Ti does not read the value of Q that is

written by Tj in instruction J . If J comes before I, then Ti reads

the value of Q that is written by Tj. Thus, the order of I and J matters.

I = write(Q), J = read(Q). The order of I and J matters for reasons similar to those of the

previous case.

Deparment of cse Page 11 of 27

4. I = write(Q), J = write(Q). Since both instructions are write operations, the order of these

instructions does not affect either Ti or Tj . However, the value obtained by the next read(Q)

instruction of S is affected, since the result of only the latter of the two write instructions is

preserved in the database. If there is no other write(Q) instruction after I and J in S, then the

order of I and J directly affects the final value of Q in the database state that results from

schedule S.

Fig: Schedule 3—showing only the read and write instructions.

Deparment of cse Page 12 of 27

We say that I and J conflict if they are operations by different transactions on the same data

item, and at least one of these instructions is a write operation. To illustrate the concept of
conflicting instructions, we consider schedule 3in Figure above. The write(A) instruction of T1

conflicts with the read(A) instruction of T2. However, the write(A) instruction of T2 does not
conflict with the read(B) instruction of T1, because the two instructions access different data

items.

Transaction Characteristics

Every transaction has three characteristics: access mode, diagnostics size, and isolation level.

The diagnostics size determines the number of error conditions that can be recorded.

If the access mode is READ ONLY, the transaction is not allowed to modify the database.

Thus, INSERT, DELETE, UPDATE, and CREATE commands cannot be executed. If we have

to execute one of these commands, the access mode should be set to READ WRITE. For

transactions with READ ONLY access mode, only shared locks need to be obtained, thereby

increasing concurrency.

The isolation level controls the extent to which a given transaction is exposed to the actions of

other transactions executing concurrently. By choosing one of four possible isolation level

settings, a user can obtain greater concurrency at the cost of increasing the transaction's

exposure to other transactions' uncommitted changes.

Isolation level choices are READ UNCOMMITTED, READ COMMITTED, REPEATABLE

READ, and SERIALIZABLE. The effect of these levels is summarized in Figure given below.

In this context, dirty read and unrepeatable read are defined as usual. Phantom is defined to be

the possibility that a transaction retrieves a collection of objects (in SQL terms, a collection of

tuples) twice and sees different results, even though it does not modify any of these tuples itself.

In terms of a lock-based implementation, a SERIALIZABLE transaction obtains locks before

reading or writing objects, including locks on sets of objects that it requires to be unchanged (see

Section 19.3.1), and holds them until the end, according to Strict 2PL.

REPEATABLE READ ensures that T reads only the changes made by committed transactions,

and that no value read or written by T is changed by any other transaction until T is complete.

However, T could experience the phantom phenomenon; for example, while T examines all

Deparment of cse Page 13 of 27

Sailors records with rating=1, another transaction might add a new such Sailors record, which is

missed by T.

A REPEATABLE READ transaction uses the same locking protocol as a SERIALIZABLE

transaction, except that it does not do index locking, that is, it locks only individual objects, not

sets of objects.

READ COMMITTED ensures that T reads only the changes made by committed transactions,

and that no value written by T is changed by any other transaction until T is complete. However,

a value read by T may well be modified by another transaction while T is still in progress, and T

is, of course, exposed to the phantom problem.

A READ COMMITTED transaction obtains exclusive locks before writing objects and holds

these locks until the end. It also obtains shared locks before reading objects, but these locks are

released immediately; their only effect is to guarantee that the transaction that last modified the

object is complete. (This guarantee relies on the fact that every SQL transaction obtains

exclusive locks before writing objects and holds exclusive locks until the end.)

A READ UNCOMMITTED transaction does not obtain shared locks before reading objects.

This mode represents the greatest exposure to uncommitted changes of other transactions; so

much so that SQL prohibits such a transaction from making any changes itself - a READ

UNCOMMITTED transaction is required to have an access mode of READ ONLY. Since such a

transaction obtains no locks for reading objects, and it is not allowed to write objects (and

therefore never requests exclusive locks), it never makes any lock requests.

The SERIALIZABLE isolation level is generally the safest and is recommended for most

transactions. Some transactions, however, can run with a lower isolation level, and the smaller

number of locks requested can contribute to improved system performance.

For example, a statistical query that finds the average sailor age can be run at the READ

COMMITTED level, or even the READ UNCOMMITTED level, because a few incorrect or

missing values will not significantly affect the result if the number of sailors is large. The

isolation level and access mode can be set using the SET TRANSACTION command. For

example, the following command declares the current transaction to be SERIALIZABLE and

READ ONLY:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE READONLY

When a transaction is started, the default is SERIALIZABLE and READ WRITE.

PRECEDENCE GRAPH

Deparment of cse Page 14 of 27

Precedence graph example

A precedence graph, also named conflict graph and serializability graph, is used in the context of

concurrency control in databases.

The precedence graph for a schedule S contains:

A node for each committed transaction in S

An arc from Ti to Tj if an action of Ti precedes and conflicts with one of Tj's actions.

A precedence graph of the schedule D, with 3 transactions. As there is a cycle (of length 2; with

two edges) through the committed transactions T1 and T2, this schedule (history) is not Conflict

serializable.

The drawing sequence for the precedence graph:-

Deparment of cse Page 15 of 27

For each transaction Ti participating in schedule S, create a node labelled Ti in
the precedence graph. So the precedence graph contains T1, T2, T3

For each case in S where Ti executes a write_item(X) then Tj executes a
read_item(X), create an edge (Ti --> Tj) in the precedence graph. This occurs
nowhere in the above example, as there is no read after write.

3. For each case in S where Ti executes a read_item(X) then Tj executes a
write_item(X), create an edge (Ti --> Tj) in the precedence graph. This results in

directed edge from T1 to T2.
4. For each case in S where Ti executes a write_item(X) then Tj executes a

write_item(X), create an edge (Ti --> Tj) in the precedence graph. This results in
directed edges from T2 to T1, T1 to T3, and T2 to T3.

5. The schedule S is conflict serializable if the precedence graph has no cycles. As
T1 and T2 constitute a cycle, then we cannot declare S as serializable or not and
serializability has to be checked using other methods.

TESTING FOR CONFLICT SERIALIZABILITY

1 A schedule is conflict serializable if and only if its precedence graph is acyclic.

2 To test for conflict serializability, we need to construct the precedence graph and to

invoke a cycle-detection algorithm.Cycle-detection algorithms exist which takeorder
n2 time, where n is the number of vertices in the graph.

(Better algorithms take order n + e where e is the number of edges.)

3 If precedence graph is acyclic, the serializability order can be obtained by a
topological sorting of the graph. That is, a linear order consistent with the partial

order of the graph.

For example, a serializability order for the schedule (a) would be one of either (b) or

(c)

Deparment of cse Page 16 of 27

4 A serializability order of the transactions can be obtained by finding a linear order

consistent with the partial order of the precedence graph.

RECOVERABLE SCHEDULES

Recoverable schedule — if a transaction Tj reads a data item previously written by a
transaction Ti , then the commit operation of Ti must appear before the commit operation of Tj.

The following schedule is not recoverable if T9 commits immediately after the read(A)
operation.

If T8 should abort, T9 would have read (and possibly shown to the user) an inconsistent

database state. Hence, database must ensure that schedules are recoverable.

CASCADING ROLLBACKS

Cascading rollback – a single transaction failure leads to a series of transaction rollbacks.
Consider the following schedule where none of the transactions has yet committed (so the
schedule is recoverable)

If T10 fails, T11 and T12 must also be rolled back.

Deparment of cse Page 17 of 27

Can lead to the undoing of a significant amount of work

CASCADELESS SCHEDULES

Cascadeless schedules — for each pair of transactions Ti and Tj such that Tj reads

a data item previously written by Ti, the commit operation of Ti appears before the

read operation of Tj.

Every cascadeless schedule is also recoverable

It is desirable to restrict the schedules to those that are cascadeless

Example of a schedule that is NOT cascadeless

CONCURRENCY SCHEDULE

 A database must provide a mechanism that will ensure that all possible schedules are
both:

Conflict serializable.

Recoverable and preferably cascadeless

A policy in which only one transaction can execute at a time generates serial schedules,

but provides a poor degree of concurrency

Deparment of cse Page 18 of 27

Concurrency-control schemes tradeoff between the amount of concurrency they allow

and the amount of overhead that they incur

Testing a schedule for serializability after it has executed is a little too late!

correct

Tests for serializability help us understand why a concurrency control protocol is

Goal – to develop concurrency control protocols that will assure serializability.

WEEK LEVELS OF CONSISTENCY

Some applications are willing to live with weak levels of consistency, allowing
schedules that are not serializable

accounts

E.g., a read-only transaction that wants to get an approximate total balance of all

E.g., database statistics computed for query optimization can be approximate (why?)

Such transactions need not be serializable with respect to other transactions

Tradeoff accuracy for performance

LEVELS OF CONSISTENCY IN SQL
Serializable — default

Repeatable read — only committed records to be read, repeated reads of same record

must return same value. However, a transaction may not be serializable – it may find some

records inserted by a transaction but not find others.

Read committed — only committed records can be read, but successive reads of record

may return different (but committed) values.

Read uncommitted — even uncommitted records may be read.

database

Lower degrees of consistency useful for gathering approximate information about the

Warning: some database systems do not ensure serializable schedules by default

E.g., Oracle and PostgreSQL by default support a level of consistency called snapshot

isolation (not part of the SQL standard)

TRANSACTION DEFINITION IN SQL

 Data manipulation language must include a construct for specifying the set of actions
that comprise a transaction.

Deparment of cse Page 19 of 27

In SQL, a transaction begins implicitly.

A transaction in SQL ends by:

Commit work commits current transaction and begins a new one.

Rollback work causes current transaction to abort.

In almost all database systems, by default, every SQL statement also commits

implicitly if it executes successfully

Implicit commit can be turned off by a database directive

E.g. in JDBC, connection.setAutoCommit(false);

RECOVERY SYSTEM

Failure Classification:

 Transaction failure :

Logical errors: transaction cannot complete due to some internal error condition

System errors: the database system must terminate an active transaction due to an error

condition (e.g., deadlock)

System crash: a power failure or other hardware or software failure causes the system

to crash.

Fail-stop assumption: non-volatile storage contents are assumed to not be corrupted as

result of a system crash

Database systems have numerous integrity checks to prevent corruption of disk data

Disk failure: a head crash or similar disk failure destroys all or part of disk storage

Destruction is assumed to be detectable: disk drives use checksums to detect failures

RECOVERY ALGORITHMS

 Consider transaction Ti that transfers $50 from account A to account B

Two updates: subtract 50 from A and add 50 to B

Deparment of cse Page 20 of 27

Transaction Ti requires updates to A and B to be output to the database.

A failure may occur after one of these modifications have been made but before both of

them are made.

Modifying the database without ensuring that the transaction will commit may leave

the database in an inconsistent state

Not modifying the database may result in lost updates if failure occurs just after

transaction commits

Recovery algorithms have two parts

1. Actions taken during normal transaction processing to ensure enoughinformation

exists to recover from failures

2. Actions taken after a failure to recover the database contents to a state that ensures
atomicity, consistency and durability

STORAGE STRUCTURE

Volatile storage:

does not survive system crashes

examples: main memory, cache memory

Nonvolatile storage:

survives system crashes

examples: disk, tape, flash memory,

non-volatile (battery backed up) RAM

but may still fail, losing data

Stable storage:

a mythical form of storage that survives all failures

approximated by maintaining multiple copies on distinct nonvolatile media

Deparment of cse Page 21 of 27

Stable-Storage Implementation

 Maintain multiple copies of each block on separate disks

copies can be at remote sites to protect against disasters such as fire or flooding.

Failure during data transfer can still result in inconsistent copies.

Block transfer can result in

Successful completion

Partial failure: destination block has incorrect information

Total failure: destination block was never updated

Protecting storage media from failure during data transfer (one solution):

Execute output operation as follows (assuming two copies of each block):

1. Write the information onto the first physical block.

2. When the first write successfully completes, write the same information onto the

second physical block.

3. The output is completed only after the second write successfully completes.

Copies of a block may differ due to failure during output operation. To recover from

failure:

1. First find inconsistent blocks:

1. Expensive solution: Compare the two copies of every disk block.

2. Better solution:

Record in-progress disk writes on non-volatile storage (Non-volatile RAM or special

area of disk).

Use this information during recovery to find blocks that may be inconsistent, and only
compare copies of these.

Used in hardware RAID systems

Deparment of cse Page 22 of 27

2. If either copy of an inconsistent block is detected to have an error (bad checksum),

overwrite it by the other copy. If both have no error, but are different, overwrite the second block

by the first block.

DATA ACCESS

 Physical blocks are those blocks residing on the disk.

System buffer blocks are the blocks residing temporarily in main memory.

Block movements between disk and main memory are initiated through the following
two operations:

input(B) transfers the physical block B to main memory.

output(B) transfers the buffer block B to the disk, and replaces the appropriate physical

block there.

We assume, for simplicity, that each data item fits in, and is stored inside, a single

block.

 Each transaction Ti has its private work-area in which local copies of all data items
accessed and updated by it are kept.

Ti's local copy of a data item X is denoted by xi.

BX denotes block containing X

by:

Transferring data items between system buffer blocks and its private work-area done

read(X) assigns the value of data item X to the local variable xi.

write(X) assigns the value of local variable xi to data item {X} in the buffer block.

Transactions

Must perform read(X) before accessing X for the first time (subsequent reads can be

from local copy)

The write(X) can be executed at any time before the transaction commits

Note that output(BX) need not immediately follow write(X). System can performthe

output operation when it seems fit.

Deparment of cse Page 23 of 27

Lock-Based Protocols
A lock is a mechanism to control concurrent access to a data item

Data items can be locked in two modes :

1. exclusive (X) mode. Data item can be both read as wellas

written. X-lock is requested using lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lockis

requested using lock-S instruction.

Lock requests are made to concurrency-control manager. Transaction can proceed only after

request is granted.

Lock-compatibility matrix

1) A transaction may be granted a lock on an item if the requested lock is compatible with locks

already held on the item by other transactions

2) Any number of transactions can hold shared locks on an item,

but if any transaction holds an exclusive on the item no other transaction may hold any

lock on the item.

3) If a lock cannot be granted, the requesting transaction is made to wait till all incompatible

locks held by other transactions have been released. The lock is then granted.

Example of a transaction performing locking:

T2: lock-S(A);

read (A);

unlock(A);
lock-S(B);

read (B);

unlock(B);

display(A+B)

Locking as above is not sufficient to guarantee serializability — if A and B get updated

in-between the read of A and B, the displayed sum would be wrong.

A locking protocol is a set of rules followed by all transactions while requesting and releasing

locks. Locking protocols restrict the set of possible schedules.

Consider the partial schedule

Deparment of cse Page 24 of 27

Neither T3 nor T4 can make progress — executing lock-S(B) causes T4 to wait for T3 to
release its lock on B, while executing lock-X(A) causes T3 to wait for T4 to release its
lock on A.

Such a situation is called a deadlock.

l To handle a deadlock one of T3 or T4 must be rolled back
and its locks released.

2. The potential for deadlock exists in most locking protocols. Deadlocks are a necessary

evil.

3. Starvation is also possible if concurrency control manager is badly designed. For

example:

a. A transaction may be waiting for an X-lock on an item, while a sequence of

other transactions request and are granted an S-lock on the same item.

b. The same transaction is repeatedly rolled back due to deadlocks.

4.Concurrency control manager can be designed to prevent starvation.

THE TWO-PHASE LOCKING PROTOCOL

1.This is a protocol which ensures conflict-serializable schedules.

2.Phase 1: Growing Phase

a.transaction may obtain locks

b.transaction may not release locks

3. Phase 2: Shrinking Phase
a.transaction may release locks

b.transaction may not obtain locks

4. The protocol assures serializability. It can be proved that the transactions can be

serialized in the order of their lock points (i.e. the point where a transaction acquired its

final lock).

5. Two-phase locking does not ensure freedom from deadlocks

Deparment of cse Page 25 of 27

6. Cascading roll-back is possible under two-phase locking. To avoid this, follow a

modified protocol called strict two-phase locking. Here a transaction must hold

all its exclusive locks till it commits/aborts.

7. Rigorous two-phase locking is even stricter: here all locks are held

tillcommit/abort. In this protocol transactions can be serialized in the order in which

theycommit.

8. There can be conflict serializable schedules that cannot be obtained if two-

phase locking is used.

9. However, in the absence of extra information (e.g., ordering of access to

data),two- phase locking is needed for conflict serializability in the following

sense:
Given a transaction Ti that does not follow two-phase locking, we can find a

transaction Tj that uses two-phase locking, and a schedule for Ti and Tj that is not
conflict serializable.

TIMESTAMP-BASED PROTOCOLS

1. Each transaction is issued a timestamp when it enters the system. If an old

transaction Ti has time-stamp TS(Ti), a new transaction Tj is assigned time-stamp

TS(Tj) such that TS(Ti) <TS(Tj).
2. The protocol manages concurrent execution such that the time-stamps
determinethe serializability order.

3. In order to assure such behavior, the protocol maintains for each data Q
twotimestamp values:

a.W-timestamp(Q) is the largest time-stamp of any transaction that

executed write(Q) successfully.

b.R-timestamp(Q) is the largest time-stamp of any transaction that executed

read(Q) successfully.

4. The timestamp ordering protocol ensures that any conflicting read and write

operations are executed in timestamp

order. 5.Suppose a transaction Ti issues a

read(Q)

1. If TS(Ti)  W-timestamp(Q), then Ti needs to read a valueof Q that
was already overwritten.

n Hence, the read operation is rejected, and Ti is rolled back.

2. If TS(Ti) W-timestamp(Q), then the read operation is executed, and

R- timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)).

6. Suppose that transaction Ti issues write(Q).
1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was

needed previously, and the system assumed that that value would never be
produced.

n Hence, the write operation is rejected, and Ti is rolled back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of

Q. n Hence, this write operation is rejected, and Ti is rolled back.
3. Otherwise, the write operation is executed, and W-timestamp(Q) is set to TS(Ti).

Deparment of cse Page 26 of 27

Thomas’ Write Rule

1. We now present a modification to the timestamp-ordering protocol that allows greater
potential concurrency than does the protocol i.e., Timestamp ordering Protocol . Let us
consider schedule 4 of Figure below, and apply the timestamp-ordering protocol. Since
T27 starts before T28, we shall assume that TS(T27) < TS(T28). The read(Q) operation
of T27 succeeds, as does the write(Q) operation of T28. When T27 attempts its write(Q)
operation, we find that TS(T27) < W-timestamp(Q), since Wtimestamp(Q) = TS(T28).
Thus, the write(Q) by T27 is rejected and transaction T27 must be rolled back.

2. Although the rollback of T27 is required by the timestamp-ordering protocol, it is
unnecessary. Since T28 has already written Q, the value that T27 is attempting to write
is one that will never need to be read. Any transaction Ti with TS(Ti) < TS(T28) that
attempts a read(Q)will be rolled back, since TS(Ti)<W-timestamp(Q).

3. Any transaction Tj with TS(Tj) > TS(T28) must read the value of Q written by T28,
rather than the value that T27 is attempting to write. This observation leads to a
modified version of the timestamp-ordering protocol in which obsolete write operations
can be ignored under certain circumstances. The protocol rules for read operations
remain unchanged. The protocol rules for write operations, however, are slightly
different from the timestamp- ordering protocol.

The modification to the timestamp-ordering protocol, called Thomas’ write rule, is this:

Suppose that transaction Ti issues write(Q).

1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was previously

needed, and it had been assumed that the value would never be produced. Hence, the
system rejects the write operation and rolls Ti back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q.

Hence, this write operation can be ignored.

3. Otherwise, the system executes the write operation and setsW-

timestamp(Q) to TS(Ti).

Deparment of cse Page 27 of 27

VALIDATION-BASED PROTOCOLS
Phases in Validation-Based Protocols

1) Read phase. During this phase, the system executes transaction Ti. It

readsthe values of the various data items and stores them in variables local to Ti. It

performs all write operations on temporary local variables, without updates of the

actualdatabase.

2) Validation phase. The validation test is applied to transaction Ti. This

determines whether Ti is allowed to proceed to the write phase without causing a violation

ofserializability.
If a transaction fails the validation test, the system aborts the transaction.

3) Write phase. If the validation test succeeds for transaction Ti, the temporary
local variables that hold the results of any write operations performed by Ti are copied to the

database. Read-only transactions omit this phase.

MODES IN VALIDATION-BASED PROTOCOLS

1. Start(Ti)

2. Validation(Ti)

3. Finish

MULTIPLE GRANULARITY.

multiple granularity locking (MGL) is a locking method used in database management

systems (DBMS) and relational databases.

In MGL, locks are set on objects that contain other objects. MGL exploits the

hierarchical nature of the contains relationship. For example, a database may have files, which

contain pages, which further contain records. This can be thought of as a tree of objects, where

each node contains its children. A lock on such as a shared or exclusive lock locks the

targeted node as well as all of its descendants.

Multiple granularity locking is usually used with non-strict two-phase locking to

guarantee serializability. The multiple-granularity locking protocol uses these

lockmodes to ensure serializability. It requires that a transaction Ti that attempts to lock a

node Q must follow these rules:

Transaction Ti must observe the lock-compatibility function of Figure above.

Transaction Ti must lock the root of the tree first, and can lock it in anymode.

Transaction Ti can lock a node Q in S or IS mode only if Ti currently has the parent

of Q locked in either IX or IS mode.

Transaction Ti can lock a node Q in X, SIX, or IX mode only if Ti currently has the

parent of Q locked in either IX or SIX mode.
Transaction Ti can lock a node only if Ti has not previously unlocked any node
(that is, Ti is two phase).

Transaction Ti can unlock a node Q only if Ti currently has none of the children of

Q locked.

